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New differential equations are derived to describe the boundary conditions at a front defining a change of

state. A method based on these equations is suggested for numerical calculation of the temperature field
in a systern undergoing a change of state.

Many processes in the metallurgical, chemical, building, and other industries involve a change in the state of
aggregation of a system of solids. In these processes, a heat of transition, which is in general a function of position and
time, is released (or absorbed) at the moving boundary G, where the change of state takes place.

The equations for the boundary conditions at the front G are known [ 1], and for the three-dimensional problem
can be expressed in the form
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When the transition from one state to another takes place at a boundary washed by a moving medium, the bound-
ary conditions may be written:
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Integration of the equation of thermal conductivity with boundary conditions (1) and (2) belongs to a class of prob-
lems with nonlinear boundary conditions, which have no exact solution.

For numerical solution of the problem, supplementary information is necessary regarding the behavior of the tem-
perature function near the boundary G. This can be obtained as follows,

Assume that at time 7 the temperature function t has finite derivatives to the second order in the interval from r
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The transition front passes through the point with radius vector p-at time T - A7. Assuming that the temperature
function at this point in the time interval from T - AT to T also has finite derivatives to the second order, we obtain
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Subtracting (4) from (3), and letting An tend to zero, we obtain an equation which, for convenience of later

discussion, we shall write as follows:
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We replace the derivative dn/dr by its value from equations (1), (2), to obtain the boundary conditions at the

moving boundary G:
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These equations give the rate of change of temperature of points situated near the surface G. From them the
temperature at these points at time 7 + AT can be found, if the temperature distribution in the body at time 7 is known.
This offers a numerical method of calculating the temperature field during change of state in a system. On putting the
thermal conduction equations [2, 3], and the boundary equations (1), (2), (6), and (7) in final form, a set of differences
necessary for numerical calculation is obtained.

As an example of a calculation of this kind, consider the following problem. A layer of iron at its melting point
is solidifying near a plane wall whose temperature is one degree less than the melting point of the metal.

The problem can be formulated mathematically as follows:
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For the numerical solution of the set of equations (8) through (11), we introduce in the given region a family of
planes perpendicular to the x axis, x =iAx.

In its simplest form the difference system corresponding to equations (8)—(11) is as follows:
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where M is the derivative of the temperature function at point m, which can be obtained by drawing through the points
t of the quadrati =apl + + ag:
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From (12j—(15) the temperature field at time (k+1)AT can be found, if the temperatures at points 0, 1, 2,...,
m and §k at time KAT are known, The temperature at points 1, 2,..., m-1 at time (k+1)AT is determined from
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difference equation (12), the temperature S~ from (15), the depth of solidification €)1 from (14). The time for
the solidification boundary G to advance to a depth 2Ax can be found from equation (14), if we make the approximation
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Fig. 1. Temperature field during change of Fig., 2. Quantities £(1) and B(2) as functions
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that in this period the temperature field is linear with x. This time may be calculated more exactly after completing
the calculations, from the quantity g = E/]/*c, which varies within narrow limits.

A computer program was devised for the difference set (12) to (15). Figs, 1 and 2 show the results of the calcula-
tions for values of the parameters: a =0.406 - 10°%m?sec, A = 23.3 w/m . degree, y = 7200 kg/m?, p = 272 ki/kg,
Ax =0.002m, AT = Ax*/2a sec, It will be seen from Fig. 2 that at substantial & the value of B varies only very
slightly, which agrees with experimental data, and also with the results of Stefan's investigation [1]. For & = 0.028 m,
the calculated value of B is 4% above the value given by the approximate solution of Lamé and Clapeyron [1] for the
conditions specified.

NOTATION

n - normal to moving front; r — radius vector of surface G; s — heat of transition released when unit area of moving
front travels unit distance; t, — temperature of medium washing surface; £ — thickness of solidified layer of metal; p —
heat of crystallization of metal; Ax — step value; i assumes successive values 0, 1, 2,..., m; m — number of steps
fully included in intercept at time T3 A7 — step along time axis T, chosen from condition (3) At = AxP/2a.
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